Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36830836

RESUMO

This study describes the changes in ion homeostasis of human endometrial mesenchymal stem/stromal cells (eMSCs) during the formation of three-dimensional (3D) cell structures (spheroids) and investigates the conditions for apoptosis induction in 3D eMSCs. Detached from the monolayer culture, (2D) eMSCs accumulate Na+ and have dissipated transmembrane ion gradients, while in compact spheroids, eMSCs restore the lower Na+ content and the high K/Na ratio characteristic of functionally active cells. Organized as spheroids, eMSCs are non-proliferating cells with an active Na/K pump and a lower K+ content per g cell protein, which is typical for quiescent cells and a mean lower water content (lower hydration) in 3D eMSCs. Further, eMSCs in spheroids were used to evaluate the role of K+ depletion and cellular signaling context in the induction of apoptosis. In both 2D and 3D eMSCs, treatment with ouabain (1 µM) results in inhibition of pump-mediated K+ uptake and severe K+ depletion as well as disruption of the mitochondrial membrane potential. In 3D eMSCs (but not in 2D eMSCs), ouabain initiates apoptosis via the mitochondrial pathway. It is concluded that, when blocking the Na/K pump, cardiac glycosides prime mitochondria to apoptosis, and whether a cell enters the apoptotic pathway depends on the cell-specific signaling context, which includes the type of apoptotic protein expressed.

2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430800

RESUMO

The mechanisms underlying the therapeutic potential of MSCs are the focus of intense research. We studied human MSCs isolated from desquamated endometrium (eMSCs), which, as previously shown, have high regenerative potential in various disease models. The aim was to evaluate the role of secreted VEGF in stimulating angiogenesis and maintaining eMSC viability and migration, which is important for improving the therapeutic properties of MSCs. We compared three eMSC cultures differing in the level of VEGF secretion: 3D spheroids, monolayer eMSCs, and monolayer eMSCs with VEGF knockdown. Spheroid eMSCs produced higher amounts of VEGF and had the strongest paracrine effect on HUVEC. eMSCs with VEGF knockdown did not stimulate angiogenesis. Monolayered eMSCs expressed VEGFR1, while spheroid eMSCs expressed both VEGFR1 and VEGFR2 receptors. The knockdown of VEGF caused a significant decrease in the viability and migration of eMSCs. eMSCs from 3D spheroids enhanced proliferation and migration in response to exogenous VEGF, in contrast to monolayered eMSCs. Our results suggest that the VEGF-VEGFR1 loop appears to be autocrine-involved in maintaining the viability of eMSCs, and VEGFR2 expression enhances their response to exogenous VEGF, so the angiogenic potential of eMSC can be up- or downregulated by intrinsic VEGF signals.


Assuntos
Endométrio , Fator A de Crescimento do Endotélio Vascular , Feminino , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Transporte Biológico
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361693

RESUMO

The ability of human pluripotent stem cells for unlimited proliferation and self-renewal promotes their application in the fields of regenerative medicine. The morphological assessment of growing colonies and cells, as a non-invasive method, allows the best clones for further clinical applications to be safely selected. For this purpose, we analyzed seven morphological parameters of both colonies and cells extracted from the phase-contrast images of human embryonic stem cell line H9, control human induced pluripotent stem cell (hiPSC) line AD3, and hiPSC line HPCASRi002-A (CaSR) in various passages during their growth for 120 h. The morphological phenotype of each colony was classified using a visual analysis and associated with its potential for pluripotency and clonality maintenance, thus defining the colony phenotype as the control parameter. Using the analysis of variance for the morphological parameters of each line, we showed that selected parameters carried information about different cell lines and different phenotypes within each line. We demonstrated that a model of classification of colonies and cells by phenotype, built on the selected parameters as predictors, recognized the phenotype with an accuracy of 70-75%. In addition, we performed a qRT-PCR analysis of eleven pluripotency markers genes. By analyzing the variance of their expression in samples from different lines and with different phenotypes, we identified group-specific sets of genes that could be used as the most informative ones for the separation of the best clones. Our results indicated the fundamental possibility of constructing a morphological portrait of a colony informative for the automatic identification of the phenotype and for linking this portrait to the expression of pluripotency markers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Prognóstico , Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias , Biomarcadores/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769282

RESUMO

In our previous study, we found that high doses of several substances with antioxidant capacities (Tempol, resveratrol, diphenyleneiodonium) can cause genotoxic stress and induce premature senescence in the human mesenchymal stem cells (MSCs). Here, using whole-transcriptome analysis, we revealed the signs of endoplasmic reticulum stress and unfolded protein response (UPR) in MSCs stressed with Tempol and resveratrol. In addition, we found the upregulation of genes, coding the UPR downstream target APC/C, and E3 ubiquitin ligase that regulate the stability of cell cycle proteins. We performed the molecular analysis, which further confirmed the untimely degradation of APC/C targets (cyclin A, geminin, and Emi1) in MSCs treated with antioxidants. Human fibroblasts responded to antioxidant applications similarly. We conclude that endoplasmic reticulum stress and impaired DNA synthesis regulation can be considered as potential triggers of cell damage and premature senescence stimulated by high-dose antioxidant treatments.


Assuntos
Antioxidantes/farmacologia , Senescência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular , Humanos
5.
J Pers Med ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070346

RESUMO

Endometrial mesenchymal stem/stromal cells (eMSCs) hold great promise in bioengineering and regenerative medicine due to their high expansion potential, unique immunosuppressive properties and multilineage differentiation capacity. Usually, eMSCs are maintained and applied as a monolayer culture. Recently, using animal models with endometrial and skin defects, we showed that formation of multicellular aggregates known as spheroids from eMSCs enhances their tissue repair capabilities. In this work, we refined a method of spheroid formation, which makes it possible to obtain well-formed aggregates with a narrow size distribution both at early eMSC passages and after prolonged cultivation. The use of serum-free media allows this method to be used for the production of spheroids for clinical purposes. Wound healing experiments on animals confirmed the high therapeutic potency of the produced eMSC spheroids in comparison to the monolayer eMSC culture.

6.
Cells ; 9(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096691

RESUMO

The synthetic polymer, polyallylamine hydrochloride (PAA), is found in a variety of applications in biotechnology and medicine. It is used in gene and siRNA transfer, to form microcapsules for targeted drug delivery to damaged and tumor cells. Conventional chemotherapy often does not kill all cancer cells and leads to multidrug resistance (MDR). Until recently, studies of the effects of PAA on cells have mainly focused on their morphological and genetic characteristics immediately or several hours after exposure to the polymer. The properties of the cell progeny which survived the sublethal effects of PAA and resumed their proliferation, were not monitored. The present study demonstrated that treatment of immortalized Chinese hamster cells CHLV-79 RJK sensitive (RJK) and resistant (RJKEB) to ethidium bromide (EB) with cytotoxic doses of PAA, selected cells with increased karyotypic instability, were accompanied by changes in the expression of p53 genes c-fos, topo2-α, hsp90, hsc70. These changes did not contribute to the progression of MDR, accompanied by the increased sensitivity of these cells to the toxic effects of doxorubicin (DOX). Our results showed that PAA does not increase the oncogenic potential of immortalized cells and confirmed that it can be used for intracellular drug delivery for anticancer therapy.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Cariotipagem , Poliaminas/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Forma Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cricetulus , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos
7.
Front Cell Dev Biol ; 8: 473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612993

RESUMO

Mesenchymal stem cells are currently tested as a promising tool for the treatment of a wide range of human diseases. Enhanced therapeutic potential of spheroids formed from these cells has been proved in numerous studies, however, the fundamental basics of this effect are still being discussed. In this work, we showed that endometrial mesenchymal stem/stromal cells (eMSCs) assembled in spheroids possess a higher therapeutic efficacy compared to cells grown in monolayer in the treatment of the defects that are non-specific for eMSC tissue origin - skin wounds. With the purpose to elucidate the possible causes of superior spheroid potency, we compared the tolerance of eMSC cultivated in spheres and monolayer to the stress insults. Using genetically encoded hydrogen peroxide biosensor HyPer, we showed that three-dimensional configuration (3D) helped to shield the inner cell layers of spheroid from the external H2O2-induced oxidative stress. However, the viability of oxidatively damaged eMSCs in spheroids appeared to be much lower than that of monolayer cells. An extensive analysis, which included administration of heat shock and irradiation stress, revealed that cells in spheroids damaged by stress factors activate the apoptosis program, while in monolayer cells stress-induced premature senescence is developed. We found that basal down-regulation of anti-apoptotic and autophagy-related genes provides the possible molecular basis of the high commitment of eMSCs cultured in 3D to apoptosis. We conclude that predisposition to apoptosis provides the programmed elimination of damaged cells and contributes to the transplant safety of spheroids. In addition, to investigate the role of paracrine secretion in the wound healing potency of spheroids, we exploited the in vitro wound model (scratch assay) and found that culture medium conditioned by eMSC spheroids accelerates the migration of adherent cells. We showed that 3D eMSCs upregulate transcriptional activator, hypoxia-inducible factor (HIF)-1, and secret ten-fold more HIF-1-inducible pro-angiogenic factor VEGF (vascular endothelial growth factor) than monolayer cells. Taken together, these findings indicate that enhanced secretory activity can promote wound healing potential of eMSC spheroids and that cultivation in the 3D cell environment alters eMSC vital programs and therapeutic efficacy.

8.
Cells ; 7(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366433

RESUMO

Temperature is an important exogenous factor capable of leading to irreversible processes in the vital activity of cells. However, the long-term effects of heat shock (HS) on mesenchymal stromal cells (MSC) remain unstudied. We investigated the karyotype and DNA repair drivers and pathways in the human endometrium MSC (eMSC) survived progeny at passage 6 after sublethal heat stress (sublethal heat stress survived progeny (SHS-SP)). G-banding revealed an outbreak of random karyotype instability caused by chromosome breakages and aneuploidy. Molecular karyotyping confirmed the random nature of this instability. Transcriptome analysis found homologous recombination (HR) deficiency that most likely originated from the low thermostability of the AT-rich HR driving genes. SHS-SP protection from transformation is provided presumably by low oncogene expression maintained by tight co-regulation between thermosensitive HR drivers BRCA, ATM, ATR, and RAD51 (decreasing expression after SHS), and oncogenes mTOR, MDM2, KRAS, and EGFR. The cancer-related transcriptomic features previously identified in hTERT transformed MSC in culture were not found in SHS-SP, suggesting no traits of malignancy in them. The entrance of SHS-SP into replicative senescence after 25 passages confirms their mortality and absence of transformation features. Overall, our data indicate that SHS may trigger non-tumorigenic karyotypic instability due to HR deficiency and decrease of oncogene expression in progeny of SHS-survived MSC. These data can be helpful for the development of new therapeutic approaches in personalized medicine.

9.
Stem Cell Res Ther ; 9(1): 50, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482664

RESUMO

BACKGROUND: Asherman's syndrome (AS) is one of the gynecological disorders caused by the destruction of the endometrium. For some cases of AS available surgical methods and hormonal therapy are ineffective. Stem cell transplantation may offer a potential alternative for AS cure. METHODS: Human endometrial mesenchymal stem cells (eMSC) organized in spheroids were transplanted in rats with damaged endometrium modeled on AS. Treatment response was defined as pregnancy outcome and litter size. RESULTS: Application of eMSC in spheroids significantly improved the rat fertility with the AS model. eMSC organized in spheroids retain all properties of eMSC in monolayer: growth characteristics, expression of CD markers, and differentiation potential. Synthesis of angiogenic and anti-inflammatory factors drastically increased in eMSC assembled into spheroids. CONCLUSIONS: Human endometrial mesenchymal stem cells (eMSC) can be successfully applied for Asherman's syndrome (AS) treatment in the rat model. eMSC organized in spheroids were more therapeutically effective than the cells in monolayer. After transplantation of eMSC in spheroids the pregnancy outcome and litter size in rats with AS was higher than in rats that received autologous rat bone marrow cells. It suggests the therapeutic plausibility of heterologous eMSC in case of failure to use autologous cells.


Assuntos
Endométrio , Fertilidade , Ginatresia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Esferoides Celulares , Animais , Modelos Animais de Doenças , Endométrio/lesões , Endométrio/metabolismo , Endométrio/patologia , Feminino , Ginatresia/metabolismo , Ginatresia/patologia , Ginatresia/terapia , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Gravidez , Ratos , Ratos Wistar , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/transplante
10.
Biochem Biophys Res Commun ; 496(4): 1162-1168, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29397942

RESUMO

Accumulating evidence suggests that the senescence-messaging secretome (SMS) factors released by senescent cells play a key role in cellular senescence and physiological aging. Phenomenon of the senescence induction in human endometrium-derived mesenchymal stem cells (MESCs) in response to SMS factors has not yet been described. In present study, we examine a hypothesis whether the conditioned medium from senescent cells (CM-old) may promote premature senescence of young MESCs. In this case, we assume that SMS factors, containing in CM-old are capable to trigger senescence mechanism in a paracrine manner. A long-term cultivation MESCs in the presence of CM-old caused deceleration of cell proliferation along with emerging senescence phenotype, including increase in both the cell size and SA-ß-Gal activity. The phosphorylation of p53 and MAPKAPK-2, a direct target of p38MAPK, as well as the expression of p21Cip1 and p16Ink4a were increased in CM-old treated cells with senescence developing whereas the Rb phosphorylation was diminished. The senescence progression was accompanied by both enhanced ROS generation and persistent activation of DNA damage response, comprising protein kinase ATM, histone H2A.X, and adapter protein 53BP1. Thus, we suggest that a senescence inducing signal is transmitted through p16/MAPKAPK-2/Rb and DDR-mediated p53/p21/Rb signaling pathways. This study is the first to demonstrate that the SMS factors secreted in conditioned medium of senescent MESCs trigger a paracrine mechanism of premature senescence in young cells.


Assuntos
Comunicação Celular/fisiologia , Senescência Celular/fisiologia , Endométrio/citologia , Endométrio/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Proteoma/metabolismo , Linhagem Celular , Feminino , Humanos , Transdução de Sinais/fisiologia
11.
Int J Hematol ; 107(3): 286-296, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29022209

RESUMO

Doxorubicin (Dox) is an effective anticancer drug with known activity against a wide spectrum of malignancies, hematologic malignancies in particular. Despite extensive clinical use, the mechanisms of its side effects and negative action on normal cells remain under study. The aim of this study was to investigate the effect of Dox on cultured human mesenchymal stem cells (MSCs) derived from menstrual blood (eMSCs), bone marrow (BMSCs) and adipose tissue (AMSCs). Dox treatment in high doses decreased the survival of MSCs in a dose-dependent manner. Clinically relevant low doses of Dox induced premature senescence of eMSCs, BMSCs and AMSCs, but did not kill the cells. Dox caused cell cycle arrest and formation of γ-H2AX foci, and increased the number of SA-ß-gal-positive cells. BMSCs entered premature senescence earlier than other MSCs. It has been reported that neural-like cells differentiated from MSCs of various origins are more sensitive to Dox than their parent cells. Dox-treated differentiated MSCs exhibited lower viability and earlier generation of γ-H2AX foci. Dox administration inhibited secretory activity in neural-like cells. These findings suggest that a clinically relevant Dox dose damages cultured MSCs, inducing their premature senescence. MSCs are more resistant to this damage than differentiated cells.


Assuntos
Tecido Adiposo/citologia , Antineoplásicos/efeitos adversos , Células Sanguíneas/citologia , Células da Medula Óssea/citologia , Senescência Celular/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Menstruação , Células-Tronco Mesenquimais/citologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Histonas , Humanos
12.
Exp Gerontol ; 72: 124-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435346

RESUMO

Cellular senescence was initially described as the phenomenon of limited cell divisions that normal cells in culture can undergo during long-term-cultivation. Later it was found that senescence may be induced by various stress factors. The intriguing resemblance between stress-induced and replicative senescence makes questionable the distinction between both types and suggests that the cellular senescence is a common outcome of stress response. Growing evidences support the idea that stress-induced senescence is the cell-type specific.


Assuntos
Apoptose , Senescência Celular , Células-Tronco/citologia , Estresse Fisiológico , Divisão Celular , Humanos
13.
Cell Stress Chaperones ; 19(3): 355-66, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24078383

RESUMO

Stem cells in adult organism are responsible for cell turnover and tissue regeneration. The study of stem cell stress response contributes to our knowledge on the mechanisms of damaged tissue repair. Previously, we demonstrated that sublethal heat shock (HS) induced apoptosis in human embryonic stem cells. This study aimed to investigate HS response of human adult stem cells. Human mesenchymal stem cells (MSCs) cultivated in vitro were challenged with sublethal HS. It was found that sublethal HS did not affect the cell viability assessed by annexin V/propidium staining. However, MSCs subjected to severe HS exhibited features of stress-induced premature senescence (SIPS): irreversible cell cycle arrest, altered morphology, increased expression of senescence-associated ß-galactosidase (SA-ß-gal) activity, and induction of cyclin-dependent kinase inhibitor p21 protein. High level of Hsp70 accumulation induced by sublethal HS did not return to the basal level, at least, after 72 h of the cell recovery when most cells exhibited SIPS hallmarks. MSCs survived sublethal HS, and resumed proliferation sustained the properties of parental MSCs: diploid karyotype, replicative senescence, expression of the cell surface markers, and capacity for multilineage differentiation. Our results showed for the first time that in human MSCs, sublethal HS induced premature senescence rather than apoptosis or necrosis. MSC progeny that survived sublethal HS manifested stem cell properties of the parental cells: limited replicative life span and multilineage capacity.


Assuntos
Senescência Celular , Resposta ao Choque Térmico , Células-Tronco Mesenquimais/citologia , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem da Célula , Sobrevivência Celular , Citometria de Fluxo , Humanos , Cariotipagem
14.
Cell Cycle ; 11(17): 3260-9, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22895173

RESUMO

Embryonic stem cells (ESC) are able to self-renew and to differentiate into any cell type. To escape error transmission to future cell progeny, ESC require robust mechanisms to ensure genomic stability. It was stated that stress defense of mouse and human ESC against oxidative stress and irradiation is superior compared with differentiated cells. Here, we investigated heat shock response of human ESC (hESC) and their differentiated progeny. Fibroblast-like cells were generated by spontaneous hESC differentiation via embryoid bodies. Like normal human diploid fibroblasts, these cells have a finite lifespan in culture, undergo replicative senescence and die. We found that sublethal heat shock affected survival of both cell types, but in hESC it induced apoptosis, whereas in differentiated cells it produced cell cycle arrest and premature senescence phenotype. Heat shock survived hESC and differentiated cells restored the properties of initial cells. Heated hESC progeny exhibited pluripotent markers and the capacity to differentiate into the cells of three germ layers. Fibroblast-like cells resisted heat shock, proliferated for a limited number of passages and entered replicative senescence as unheated parental cells. Taken together, these results show for the first time that both hESC and their differentiated derivatives are sensitive to heat shock, but the mechanisms of their stress response are different: hESC undergo apoptosis, whereas differentiated cells under the same conditions exhibit stress-induced premature senescence (SIPS) phenotype. Both cell types that survived sublethal heat shock sustain parental cell properties.


Assuntos
Apoptose/fisiologia , Senescência Celular/fisiologia , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Resposta ao Choque Térmico/fisiologia , Diferenciação Celular/fisiologia , Primers do DNA/genética , Células-Tronco Embrionárias/fisiologia , Fibroblastos/fisiologia , Citometria de Fluxo , Imunofluorescência , Proteínas de Choque Térmico/metabolismo , Humanos , Immunoblotting , Indóis , Cariotipagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...